Journalists are the archaeologist By Prof Dr Sohail Ansari & Simpson’s paradox.

Love yourself first, because that is who you will be spending the rest of your life with. Unknown. “Husbands should take good care of their wives, with [the bounties] God has given to some more than others and with what they spend out of their own money. Righteous wives are devout and guard what God would have them guard in their husbands’ absence…” [Qur’an, 4.34]
Journalists do not waste time with their own explanations

·         Journalists are in the search for the explanations people want to hear.

Henry "Indiana" Jones, Jr

·         Archeology is the search for facts, not truth. If it's truth you're looking for, Dr. Tyree's philosophy class is right down the hall

·           Don't waste your time with explanations: people only hear what they want to hear. Paulo Coelho

Simpson’s paradox

What is it?

This is where trends that appear within different groups disappear when data for those groups are combined. When this happens, the overall trend might even appear to be the opposite of the trends in each group.
One example of this paradox is where a treatment can be detrimental in all groups of patients, yet can appear beneficial overall once the groups are combined.

How does it happen?

This can happen when the sizes of the groups are uneven. A trial with careless (or unscrupulous) selection of the numbers of patients could conclude that a harmful treatment appears beneficial.

Example

Consider the following double blind trial of a proposed medical treatment. A group of 120 patients (split into subgroups of sizes 10, 20, 30 and 60) receive the treatment, and 120 patients (split into subgroups of corresponding sizes 60, 30, 20 and 10) receive no treatment.
The overall results make it look like the treatment was beneficial to patients, with a higher recovery rate for patients with the treatment than for those without it.
However, when you drill down into the various groups that made up the cohort in the study, you see in all groups of patients, the recovery rate was 50% higher for patients who had no treatment.
But note that the size and age distribution of each group is different between those who took the treatment and those who didn’t. This is what distorts the numbers. In this case, the treatment group is disproportionately stacked with children, whose recovery rates are typically higher, with or without treatment.

Base rate fallacy

What is it?

This fallacy occurs when we disregard important information when making a judgement on how likely something is.
If, for example, we hear that someone loves music, we might think it’s more likely they’re a professional musician than an accountant. However, there are many more accountants than there are professional musicians. Here we have neglected that the base rate for the number of accountants is far higher than the number of musicians, so we were unduly swayed by the information that the person likes music.

 

How does it happen?

The base rate fallacy occurs when the base rate for one option is substantially higher than for another.

Example

Consider testing for a rare medical condition, such as one that affects only 4% (1 in 25) of a population.
Let’s say there is a test for the condition, but it’s not perfect. If someone has the condition, the test will correctly identify them as being ill around 92% of the time. If someone doesn’t have the condition, the test will correctly identify them as being healthy 75% of the time.
So if we test a group of people, and find that over a quarter of them are diagnosed as being ill, we might expect that most of these people really do have the condition. But we’d be wrong.
In a typical sample of 300 patients, for every 11 people correctly identified as unwell, a further 72 are incorrectly identified as unwell. The ConversationCC BY-ND

According to our numbers above, of the 4% of patients who are ill, almost 92% will be correctly diagnosed as ill (that is, about 3.67% of the overall population). But of the 96% of patients who are not ill, 25% will be incorrectly diagnosed as ill (that’s 24% of the overall population).
What this means is that of the approximately 27.67% of the population who are diagnosed as ill, only around 3.67% actually are. So of the people who were diagnosed as ill, only around 13% (that is, 3.67%/27.67%) actually are unwell.

Worryingly, when a famous study asked general practitioners to perform a similar calculation to inform patients of the correct risks associated with mammogram results, just 15% of them did so correctly.

Comments